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SUMMARY

Eukaryotic proteins entering the secretory path-
way are translocated into the ER by signal se-
quences that vary widely in primary structure.
We now provide a functional rationale for this
long-observed sequence diversity by demon-
strating that differences among signals facilitate
substrate-selective modulation of protein trans-
location. We find that during acute ER stress,
translocation of secretory and membrane
proteins is rapidly and transiently attenuated in
a signal sequence-selective manner. Their
cotranslational rerouting to the cytosol for
degradation reduces the burden of misfolded
substrates entering the ER and represents a
pathway for pre-emptive quality control (pQC).
Bypassing the pQC pathway for the prion pro-
tein increases its rate of aggregation in the ER
lumen during prolonged stress and renders cells
less capable of viable recovery. Conversely,
pharmacologically augmenting pQC during ER
stress proved protective. Thus, protein translo-
cation is a physiologically regulated process
that is utilized for pQC as part of the ER stress
response.

INTRODUCTION

Eukaryotic proteins destined for the extracellular envi-

ronment, cell surface, or compartments of the secretory

pathway are first translocated across or integrated into

the endoplasmic reticulum (ER) membrane (Wickner and

Schekman, 2005). Their initial segregation to the ER re-

quires a signal sequence, often encoded at the N terminus,

that is cotranslationally recognized by the signal recogni-
C

tion particle (SRP) (Shan and Walter, 2005). The SRP-ribo-

some-nascent chain complex is subsequently targeted,

via an interaction with the SRP receptor, to an ER protein

translocon whose central channel is composed of the

Sec61 complex (Osborne et al., 2005). The signal se-

quence is recognized again, this time by the Sec61 com-

plex, to facilitate insertion of the nascent chain into the

translocation channel and tight docking of the ribosome

at the translocon (Jungnickel and Rapoport, 1995). Further

protein synthesis is accompanied by Sec61-mediated

translocation of the nascent chain across the ER mem-

brane, or in the case of membrane proteins, integration

into the lipid bilayer.

These basic steps of substrate recognition, targeting,

engagement of the translocon, and translocation are

thought to be universally applicable to essentially all se-

cretory and membrane proteins. Whether any step in this

process can be modulated under certain cellular condi-

tions to selectively regulate protein translocation remains

unknown. However, a strictly constitutive system of

translocation would seem unlikely since essentially every

other basic cellular process (from transcription to protein

synthesis to degradation) is regulated for at least some

substrates at one time or another. How then might protein

translocation be regulated?

Given the essential role of the signal sequence in medi-

ating both targeting and initiation of translocation, any reg-

ulatory process would presumably involve modulation of

signal sequence function. Although such modulation has

yet to be demonstrated, a growing number of studies are

beginning to question the widely held view that signal

sequences are functionally equivalent and largely inter-

changeable. For example, analyses of signal sequence-

translocon interactions suggest an unexpectedly broad

range of efficiencies in initiating translocation (Kim et al.,

2002). Surprisingly, only a minority of signal sequences,

such as the one from the well-studied model secretory hor-

mone Prolactin (Prl), are highly efficient in vitro and in vivo

(Kim et al., 2002; Levine et al., 2005). These same efficient
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signal sequences also seem to be the only signals that do

not depend substantially on accessory translocon compo-

nents like TRAM (Voigt et al., 1996) and the TRAP complex

(Fons et al., 2003) for translocation in vitro. If the only role

for a signal sequence was to guarantee translocation

across the ER, it is difficult to rationalize the existence of

such diversity in sequence, efficiency, or complexity in

their requirements for additional factors. Yet, these func-

tional differences in efficiency are often evolutionarily

conserved (Kim et al., 2001, 2002), even in instances in

which inefficiencies in translocation would appear dis-

advantageous.

A particularly notable example is the signal sequence

from the mammalian Prion protein (PrP), which is detect-

ably less efficient in its interaction with the translocon

than the signal from Prl (Rutkowski et al., 2001; Kim

et al., 2002; Levine et al., 2005). In vivo, slight inefficiency

of the PrP signal constantly generates a nontranslocated

cytosolic form of PrP (cyPrP) that is degraded by the pro-

teasome (Drisaldi et al., 2003; Rane et al., 2004). Although

cyPrP represents a very low abundance form of PrP under

normal conditions, it rapidly accumulates and aggregates

upon inhibition of the proteasome (Ma and Lindquist,

2002; Drisaldi et al., 2003; Rane et al., 2004). CyPrP and

the aggregates formed from it can be cytotoxic in cultured

cells (Ma et al., 2002; Rane et al., 2004; Grenier et al.,

2006) and cause neurodegeneration when generated in

transgenic mice (Ma et al., 2002).

Similarly, slight inefficiency of the PrP signal sequence

also permits the generation of CtmPrP (Kim and Hegde,

2002), a transmembrane form of PrP whose slight over-

representation can lead to neurodegeneration in mice

and humans (Hegde et al., 1998a, 1999). Remarkably,

the generation of both cyPrP and CtmPrP can be markedly

reduced or even eliminated simply by replacing the PrP

signal sequence with the more efficient signal from Prl

(Rutkowski et al., 2001; Kim et al., 2002; Rane et al.,

2004). Even CtmPrP-favoring mutations in the mature do-

main of PrP that ordinarily cause neurodegeneration can

be reversed by increasing signal sequence efficiency

(Kim and Hegde, 2002). Based on these findings, it is puz-

zling that the signal sequence of PrP has not evolved a few

amino acid changes that increase its hydrophobicity to im-

prove its functional efficiency. Yet, comparisons across

multiple species have revealed that, although several

polymorphic changes have occurred in the PrP signal

(Schatzl et al., 1995), its slight but measurable inefficiency

is precisely maintained for unknown reasons (Kim et al.,

2001).

To resolve this apparent paradox, we hypothesized that

differences between signal sequences among substrates

might allow translocation to be modulated selectively

under certain cellular conditions. Hence, there may exist

situations when a seemingly imperfect signal sequence

(such as from PrP), although potentially detrimental under

some conditions, has additional (and beneficial) function-

ality that is not available with a ‘‘constitutive’’ and maxi-

mally efficient signal sequence (such as from Prl). In
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exploring this concept for PrP, we have now discovered

a stress-induced pathway of translocational attenuation

that acts to minimize PrP entry into and misfolding within

the ER lumen. Remarkably, this pathway appears to be

broadly utilized by the cell for many substrates in a signal

sequence-dependent manner. Thus, the long-observed

diversity in signal sequences (von Heijne, 1985) appears

to encode regulatory information that permits the cell to

selectively modulate translocation in a substrate-specific

manner. These findings not only reveal protein transloca-

tion as a regulated rather than constitutive process but

also identify a previously unappreciated protective re-

sponse to ER stress.

RESULTS AND DISCUSSION

Reduced Translocation of PrP into the ER during ER

Stress Defines a pQC Pathway

To look for potential examples of translocational regula-

tion, we sought to identify conditions when the transloca-

tion of PrP is differentially modulated relative to Prl. A log-

ical situation is during ER stress (Rutkowski and Kaufman,

2004), when entry into the ER of certain misfolding-prone

proteins such as PrP may be disadvantageous to the cell.

We therefore analyzed biosynthesis of PrP, Prl, and GFP (a

cytosolic control) in pulse-labeled cultured cells acutely

treated with two qualitatively different ER stressors: DTT,

a reducing agent that induces ER stress by preventing

productive folding of many secretory and membrane pro-

teins, and thapsigargin (Tg), which depletes ER Ca2+ and

influences chaperone function. Relative to untreated cells,

Tg- and DTT-treated cells showed translational attenua-

tion (see Figure S1 in the Supplemental Data available

with this article online). This general translational inhibition

was quantitatively mirrored by GFP and Prl (Figure 1A).

Furthermore, all of the Prl synthesized under stressed

and nonstressed conditions was processed by signal

peptidase (Figure 1A; see also Figure 1D) and found by

fractionation to be noncytosolic (data not shown). Al-

though total PrP synthesis during Tg and DTT stress was

attenuated to approximately the same levels as Prl and

GFP, the amount of fully glycosylated PrP was preferen-

tially reduced. The loss of glycosylated PrP was accom-

panied by a corresponding relative increase in the ungly-

cosylated forms (asterisk, Figure 1A), at least some of

which appeared to still contain an uncleaved signal se-

quence (S.-W.K. and R.S.H., unpublished data; Orsi

et al., 2006; see Supplemental Data, Note 1).

Among the various possible reasons for this observation

(see Supplemental Data, Note 2), the explanation proved

to be a selective decrease in PrP translocation (but not

Prl) during ER stress. This could be shown by domain

swap experiments in which signal sequences were ex-

changed between PrP and Prl. Fusion of the Prl signal to

PrP (Prl-PrP) now allowed Prl-PrP to be glycosylated

with comparable efficiency in both untreated and DTT-

stressed cells, with the decrease in fully glycosylated

Prl-PrP during the stress paralleling the degree of
.



Figure 1. Signal Sequence-Specific Translocational Attenuation of PrP during Acute Stress

(A) Immunoprecipitation of transfected products (GFP, Prl, or PrP) from pulse-labeled (15 min) cultured HeLa cells treated for 30 min with 10 mM Tg or

10 mM DTT. Radiolabeled products recovered from stressed cells were quantified relative to untreated cells. For PrP, the amount of glycosylated

species (+CHO) was also quantified separately. Asterisk is unglycosylated PrP.

(B) The indicated constructs were analyzed as in (A), except COS-7 cells were used, labeling was for 10 min, and 100 mM ALLN (a proteasome

inhibitor) was included.

(C) PrP-Prl was analyzed and quantified as in (A).

(D) Prl and PrP-Prl were immunoprecipitated from pulse-labeled transfected cells treated with 10 mM Tg in the presence of 10 mM MG132 (a protea-

some inhibitor) as indicated. Note that PrP-Prl (but not Prl) generates signal sequence-containing precursor (+SS, indicative of nontranslocated

protein) in a stress-dependent manner, illustrating its translocational attenuation.

(E) Time course of recovery from translocational attenuation. COS-7 cells that were either untreated, acutely treated (30 min) with 10 mM DTT, or

recovered for between 5 and 90 min were pulse labeled for 10 min and analyzed by immunoprecipitation of PrP. The efficiencies of glycosylation (solid

line) and synthesis (dashed line) of either PrP (left graph) or Prl-PrP (right graph) relative to untreated cells are plotted.
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translational attenuation (Figure 1B). A similar effect was

also observed (albeit to a lesser extent) with another effi-

cient signal sequence (from the protein Osteopontin

[Opn]). Comparable results were also seen with Tg stress

and validated further by cell fractionation experiments

(Figure S3). Conversely, PrP-Prl biosynthesis was de-

creased below that attributable to general translational

attenuation during acute ER stress (Figure 1C), with detec-

tion of a nontranslocated precursor when the proteasome

is inhibited (Figure 1D).

Stress-dependent attenuation of PrP translocation was

initiated almost immediately upon addition of the stressor

(within �5 min; data not shown). Furthermore, reversal of

translocational attenutation occurred within minutes of

removing the stress, even faster than recovery from trans-

lational attenuation (Figure 1E). Similar effects were ob-

served in a variety of cell types (albeit to different extents)

with both DTT and Tg (data not shown). Notably, other

(non-ER) cellular stressors that also cause translational at-

tenuation (such as serum starvation or amino acid depri-

vation) did not influence PrP translocation (data not

shown). Based on these results, we conclude that during

acute ER stress, a significant amount of nascent PrP is

rerouted in a signal sequence-selective manner from its

normal fate of being translocated into the ER to a pathway

of proteasome-mediated degradation. We have termed

this process ‘‘pre-emptive’’ quality control (pQC) to de-

note a pathway by which proteins are cotranslationally tri-

aged for degradation at a step in their biosynthesis before

they engage the conventional quality control systems in

the ER lumen. The machinery utilized for degradation of

translocationally aborted proteins during pQC remains to

be identified but could potentially involve the recruitment

of chaperones to the translocon by p58IPK (Oyadomari

et al., 2006).

PrP Is Susceptible to Terminal Misfolding

in the ER during Stress

Given that the functional properties of the PrP signal

sequence appear to be evolutionarily conserved (Kim

et al., 2001, 2002), we hypothesized that stress-depen-

dent translocational attenuation of PrP may provide

some benefit to the cell. One possibility is that transloca-

tional attenuation serves to avoid an adverse conse-

quence of continued translocation during ongoing ER

stress. Indeed, PrP translocated into the ER during DTT-

induced stress was more prone to aggregation (as judged

by decreased solubility in detergent solution) than newly

synthesized PrP made in unstressed cells (Figure 2A).

This effect was rapidly reversed (within minutes) upon re-

moval of the stressor, at which point the PrP entering the

ER lumen was again made in a soluble form. Pulse-chase

experiments showed that PrP translocated into the ER

during stress was prevented from subsequent exit to

post-ER compartments (Figure S4A), further supporting

the conclusion that it was misfolded.

Misfolded PrP in the ER was capable of being refolded

and trafficked out of the ER, provided the stressor was
1002 Cell 127, 999–1013, December 1, 2006 ª2006 Elsevier Inc
removed promptly (within �15 min; Figure 2B). However,

continuing the stress an extra 30–360 min caused pro-

gressively larger proportions of the ER-lumenal PrP to

become terminally misfolded, being retained in the ER in

a largely insoluble state for prolonged times (Figures 2B

and 2C and Figure S4B). Western blotting of total lysates

from these same cells demonstrated that, after 6 hr of

stress, the ER form of PrP had accumulated to �30%–

50% of total PrP (bottom panels, Figure 2C). This mis-

folded PrP persisted for the ensuing 20 hr despite ER func-

tion returning to normal (as judged by replenishment of

fully mature PrP [the ‘‘post-ER’’ form] on the cell surface).

Importantly, artificially retaining PrP in the ER lumen using

brefeldin A (BFA) did not cause it to become insoluble

(N.S.R. and R.S.H., unpublished data) or incapable of sub-

sequent trafficking upon BFA removal (Figures S4C and

S4D). Thus, the results in Figure 2 illustrate that PrP enter-

ing the ER during acute ER stress is prone to terminal mis-

folding and aggregation, after which it is neither refolded

nor degraded efficiently, even if the stressor is subse-

quently alleviated. This terminal misfolding occurs over

time scales of under an hour (e.g., Figure 2B and

Figure S4B), well before the transcriptional responses to

ER stress have had an opportunity to upregulate the ER

biosynthetic and folding machinery (Yoshida et al., 2003).

The Consequences of Bypassing the pQC Pathway

The relative ease with which PrP becomes irrevocably

misfolded in the ER lumen combined with its compara-

tively rapid degradation in the cytosolic environment sug-

gest that stress-dependent translocational attenuation

(i.e., access to the pQC pathway) may be a protective

response to ER stress. To investigate this hypothesis,

we determined the consequences of denying PrP access

to the pQC pathway. We therefore generated stable cell

lines that overexpress either PrP (which is subject to

pQC) or Opn-PrP (which is largely refractory to pQC).

The cell lines were analyzed by western blotting, immuno-

fluorescence, and glycosidase digestion to confirm com-

parable expression, localization, and trafficking of PrP

(Figures S5A–S5C).

When these same cells were subjected to DTT stress,

Opn-PrP progressively accumulated the glycosylated ER

form at a noticeably higher rate than PrP over the course

of 8 hr (Figure 3A). Importantly, simply preventing ER-to-

Golgi transport with BFA (which does not acutely induce

ER stress and does not mediate translocational attenua-

tion; data not shown) caused the accumulation of the ER

form at comparable rates for both PrP and Opn-PrP

(Figure S5D). Thus, the rate of entry into the ER is very sim-

ilar for PrP and Opn-PrP in the absence of ER stress but

differs sufficiently during stress to influence the accumula-

tion of misfolded ER-lumenal PrP. Remarkably, the in-

creased rate of misfolded ER-lumenal Opn-PrP accumu-

lation led to a diminished capacity to recover from the

ER stress, as measured using a cell replating viability as-

say (Figures 3B and 3E). Similar effects on viability were

also seen with other ER stressors (Figure 3E). By contrast,
.



Figure 2. Terminal Misfolding of PrP during

Prolonged ER Stress

(A) The left panel shows treatment protocols using

N2a cells for 30 min pulse labeling (green bars) and

30 min treatment with 10 mM DTT (red bars) rela-

tive to harvesting (arrows) and analysis by solubility

assays. PrP in the detergent-insoluble (P) and -sol-

uble (S) fractions was recovered by immunoprecip-

itation and visualized by autoradiography. The

core-glycosylated ER form and nonglycosylated

species (*) of PrP are indicated.

(B) Treatment protocols for labeling, DTT treat-

ment, and chase (for 1–8 hr) prior to harvesting

and immunoprecipitation are shown above the

respective autoradiographs. Unglycosylated (*),

core-glycosylated (ER), and complex glycosylated

(post-ER) forms of PrP are indicated.

(C) Cell lysates from the indicated treatment proto-

cols were divided and analyzed for radiolabeled

PrP by immunoprecipitation and autoradiography

([IP], top panels) or for total PrP by immunoblots

([IB], bottom panels).
partial inhibition of the proteasome in these same cells

caused a nonglycosylated form of PrP (but not Opn-PrP)

to accumulate in the cytosol (Figure 3C). Replating viability

assays showed the PrP cells to be less viable than Opn-

PrP cells after chronic proteasome inhibition (Figures 3D

and 3E).

We conclude from Figure 3 that inefficiencies in PrP

translocation necessitate constant proteasomal degrada-

tion of nontranslocated material that can be highly aggre-

gation prone and cytotoxic if left undegraded. Although

the more-efficient Opn signal sequence minimizes these

problems, it becomes a liability when the ER environment

is compromised. Under these conditions, constitutively

high translocation efficiency of Opn-PrP results in a higher

rate of accumulation of misfolded PrP in the ER lumen and

decreased recovery from the stressor when compared to

PrP. Thus, bypassing stress-mediated translocational at-

tenuation of PrP sensitizes cells to ER stress. This result

suggests that, for PrP, the pQC pathway is a physiologi-
C

cally important facet of the cellular response to an altered

folding environment in the ER. The basis of this effect cor-

related directly with the minimization of protein misfolding,

aggregation, and accumulation in the ER lumen.

Accentuating the pQC Pathway during

ER Stress Is Protective

The increased sensitivity of Opn-PrP-expressing cells to

ER stress suggests that constitutive translocation under

these conditions is more detrimental than rerouting PrP

directly to the cytosol. Although a reduction in PrP trans-

location might have seemed problematic given previous

results identifying cytosolic PrP as highly cytotoxic (Ma

et al., 2002) and aggregation prone (Ma and Lindquist,

2002; Drisaldi et al., 2003; Rane et al., 2004; Grenier

et al., 2006), this proved not to be the case. Pharmaco-

logic inhibition of PrP translocation in vivo with cotransin

(CT; see Figures S3B and S5E) for up to 24 hr did not

lead to the accumulation of PrP aggregates in the cytosol
ell 127, 999–1013, December 1, 2006 ª2006 Elsevier Inc. 1003



Figure 3. Consequences of Bypassing

the pQC Pathway for PrP

(A) N2a cells stably expressing PrP or Opn-PrP

were treated for 0–8 hr with 10 mM DTT and

analyzed for total PrP by immunoblot. Note

the increased accumulation of the ER form in

Opn-PrP cells relative to PrP cells, especially

obvious at the 4 hr time point.

(B) Cells stably expressing PrP or Opn-PrP

were treated with 10 mM DTT for 24 hr, re-

plated in normal media, and visualized 10

days later by staining with crystal violet.

(C) Cells stably expressing PrP or Opn-PrP

were treated for 0–8 hr with 5 mM MG132 and

analyzed for total PrP by immunoblot. Note

the increased accumulation of unglycosylated

species (�CHO) for PrP, but not for Opn-PrP.

(D) Cells treated with 5 mM MG132 for 24 hr

were replated in normal media and visualized

8 days later by staining with crystal violet.

(E) Quantification of replating viability assays

for survival of cells expressing PrP (gray bars)

or Opn-PrP (black bars) after the indicated

treatments for 24 hr (5 mM MG132), 6 hr (10

mM DTT), 18 hr (1 mg/ml Tunicamycin; Tm) or

5 min (5 mM Tg).
or obvious cell death (Figures 4A and 4D). Instead, total

PrP simply decreased over time due to turnover of pre-

existing PrP from the cell surface and rapid degradation

of nontranslocated PrP (which could be visualized by

proteasome inhibition; Figure 4A).

Upon removal of CT, cell surface PrP was readily replen-

ished, with no accumulation of cytosolic PrP even over

the course of 72 hr (Figures 4B and 4C). This contrasted

sharply with proteasome inhibition, where aggregates of

nontranslocated PrP appeared within a few hours (Fig-

ure 3C) and persisted long after alleviation of proteasome

inhibition (Figure 4C). Furthermore, once initiated, PrP ag-

gregates continue to accumulate (by a poorly understood

‘‘self-propagation’’ process that amplifies even trace

amounts of PrP aggregates; Ma and Lindquist, 2002),

eventually leading to decreased cell viability (Figure 3D).

The consequences of proteasome inhibition on PrP accu-

mulation and cell viability were worsened by simultaneous
1004 Cell 127, 999–1013, December 1, 2006 ª2006 Elsevier Inc
inhibition with CT (Figure 4D) or DTT (Figure S6A), both of

which result in increased delivery of PrP to the cytosol.

Since even a complete block in PrP translocation is not

inherently cytotoxic, we could ask whether accentuating

translocational attenuation of PrP could be protective

from the consequences of prolonged ER stress. Indeed,

simultaneous treatment with CT during chronic DTT stress

was able to partially improve viability for PrP-expressing

cells (Figure 4E). This effect was due at least in part to

the effect of CT on PrP, since a similar rescue was not

effected for cells expressing Opn-PrP (Figure 4E), whose

translocation is only partially inhibited by CT (Figure 4A

and Figure S5E). With less-severe DTT stress, even Opn-

PrP cells or nontransfected cells could be rescued by

simultaneous treatment with CT (Figure S6B and data

not shown), presumably because CT inhibits several other

signal-containing proteins to reduce the overall burden

of substrates entering the ER (see Figure S7). Thus,
.



Figure 4. Pharmacologic Induction of pQC during Prolonged ER Stress Is Protective

(A) PrP and Opn-PrP cells were treated for 6 hr (5 mM CT, 5 mM MG132, and/or 0.1% DMSO) and analyzed by immunoblotting. The glycosylated

(+CHO) and unglycosylated (�CHO) forms of PrP are indicated.

(B) PrP and Opn-PrP cells treated for 12 hr with solvent (0.1% DMSO) or 5 mM CT were recovered in regular media for the indicated times and analyzed

by immunoblotting for PrP.

(C) PrP-expressing cells were treated for 4 hr with either 5 mM CT or 5 mM MG132, followed by trypsinization and replating in normal media for the

indicated times before harvesting and analysis by immunoblotting. Diagram illustrating the experimental design is shown.

(D) PrP-expressing cells treated for 12 hr as indicated were replated in normal media and visualized 10 days later by staining with crystal violet.

Quantification of viability relative to control is indicated.

(E) PrP and Opn-PrP cells treated for 24 hr as indicated were replated in normal media and visualized 10 days later by staining with crystal violet.

Quantification of viability relative to control is indicated.
complementary to the adverse consequences of bypass-

ing pQC (Figure 3), accentuating pQC for PrP is protective

during ER stress.

The pQC Pathway Is Broadly Utilized

Since highly efficient signals like those from Prl and Opn

are found on a relative minority of proteins, we surmised

that the pQC pathway might be utilized by many proteins
Cel
in addition to PrP. To examine this idea, we took two

parallel approaches: analysis of global translocation effi-

ciency using N-linked glycosylation as a surrogate marker

for entry into the ER, and individual analyses of various

secretory and membrane proteins.

In the first approach (Figure 5A), pulse-labeled adherent

cultured cells are first permeabilized with low concentra-

tions of digitonin to selectively extract the cytosolic
l 127, 999–1013, December 1, 2006 ª2006 Elsevier Inc. 1005
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contents. The remainder of the cell is then solubilized and

the glycoproteins isolated by binding to immobilized con-

conavalin A (ConA). Quantitative analysis of the ConA and

digitonin fractions by SDS-PAGE and phosphorimaging is

used to derive a ‘‘glycoprotein-to-cytosolic protein ratio’’

(GCR), a parameter that should change with any acute

changes to the efficiency of protein sequestration into

the ER. This approach was tested and validated using

CT to directly influence translocation efficiencies (Fig-

ure S7).

Upon acute DTT stress, the GCR promptly decreased

by �30% within 10 min (Figure 5B). At very short times

after DTT treatment, several glycoproteins (but no cyto-

solic proteins) were selectively reduced to a much greater

level than others (Figure S8). At longer treatment times

(Figure 5C), there was both a greater degree of transla-

tional attenuation and a larger number of glycoproteins

whose levels were yet lower (Supplemental Data, Note 3).

Interestingly, some glycoproteins were far less affected

than others at all treatment times (asterisks in Figure 5C).

Compilation of numerous experiments examining GCR

upon treatment of cells with various agents (Figure 5D) re-

vealed a similar, albeit smaller, effect with the ER stressor

Tg. Time course experiments with Tg also showed a rapid

onset of decreased GCR, concomitant with or slightly

faster than translational attenuation (data not shown).

Treatments with BFA, serum starvation, or amino acid star-

vation did not show obvious changes in GCR (Figure 5D

and data not shown). The stress-mediated reduction in

GCR was rapidly reversible within minutes after removal

of the stressor (Figure 5E), well before translational attenu-

ation was reversed. This argued that the GCR effect was

not a direct consequence of decreased translation per se.

For example, direct comparison of two samples with es-

sentially equal translational repression (�70%) but mark-

edly different GCR clearly illustrated the selective effect

on glycoproteins relative to cytosolic proteins (Figure 5E).

The rapid, reversible, and substrate-selective reduction

of glycoprotein biosynthesis (beyond that accounted by

translational attenuation alone) was reminiscent of

stress-mediated signal sequence-specific translocational

attenuation of PrP, suggesting that changes in GCR could

potentially be caused by changes in protein translocation
Ce
efficiencies. The rapid induction (less than 10 min) argued

against a transcriptional suppression of glycoproteins,

while the rapid reversibility was not compatible with a ma-

jor contribution from selective degradation of transcripts

coding for glycoproteins (Hollien and Weissman, 2006).

Furthermore, pulse-chase and inhibitor experiments

(Figure S9) argued against a substantial increase in the

retrotranslocation (or ERAD) pathway at such short times

after initiating stress. Together, these findings pointed to-

ward translocational attenuation as the principal basis for

the decreased GCR observed during acute ER stress.

To verify this conclusion further, we examined several

individual proteins. Among our still-cursory survey, we

found that some membrane glycoproteins such as

TRAPa, Frizzled-7, vesicular stomatitis virus glycoprotein

(VSVG), and vascular cell adhesion molecule (VCAM)

were essentially unaffected in their biosynthesis during

stress beyond that caused by translational attenuation

(Figure 5F; S.-W.K. and R.S.H., unpublished data). By

contrast, angiotensinogen, interferon-g, and the cortico-

tropin-releasing factor receptor (CRFR) were each attenu-

ated to varying degrees during stress (Figure 5F; S.-W.K.

and R.S.H., unpublished data). Replacement of the

CRFR signal sequence with that from Prl partially rescued

its stress-dependent attenuation (Figure 5F), further vali-

dating the fact that the effect on CRFR was at the level

of its translocation into the ER. Thus, the pQC pathway

is not unique to PrP and appears to be more broadly uti-

lized based on both the glycoprotein profiling experiments

and survey of several secretory and membrane proteins.

Reconstitution of Signal Sequence-Specific

Translocational Attenuation In Vitro

To gain insight into the mechanisms underlying pQC,

we sought to reconstitute its salient features in vitro. In

initial experiments, we analyzed translocation of endoge-

nous mRNAs using semipermeabilized cells pretreated

with ER stressors (Supplemental Data, Note 4 and

Figure S10). These experiments not only supported the

conclusions from the in vivo studies but suggested that

translocation is likely to be attenuated at the ER after na-

scent polypeptides are targeted to and docked at the

translocon.
Figure 5. Analysis of Global Glycoprotein Biosynthesis during Acute ER Stress

(A) Experimental design.

(B) HeLa cells treated with 10 mM DTT for the indicated times were pulse labeled (for 15 min), fractionated, and quantified to determine the glyco-

protein-to-cytosolic protein ratio (GCR). The GCR at each time point (normalized to untreated cells) is plotted along with the overall level of protein

synthesis (mean ± SD for three experiments).

(C) Radiolabeled cytosolic proteins and glycoproteins from untreated and DTT-stressed (30 min) HeLa cells. Asterisks indicate bands that are

minimally attenuated relative to other glycoproteins.

(D) GCR (normalized to untreated cells analyzed in parallel) for HeLa cells acutely treated (for 30 min) with 10 mM Tg, 10 mM DTT, 10 mg/ml BFA, or

10 mM CT. Each point represents an individual experiment, with the gray bar showing the range observed. BFA* indicates treatment for 12 hr.

(E) GCR (solid line) and overall translation (dotted line) was measured in cells pretreated for between 0 and 30 min with 10 mM DTT, or treated for 30

min followed by recovery in normal media for 0–30 min. Samples from time points shaded in gray are shown to the right. Note that during acute stress,

many (but not all) glycoproteins are attenuated in their biosynthesis relative to the situation during recovery.

(F) Analysis as in Figure 1A of Frizzled-7 (Fz7), TRAPa, CRF1 receptor (CRFR), and Prl-CRFR by pulse labeling and immunoprecipitation from tran-

siently transfected cells treated for 30 min with 10 mM Tg or 10 mM DTT. Asterisks indicate nonglycosylated forms of each glycoprotein (except Friz-

zled-7, in which a nonglycosylated form was not detectable). The amount of the translocated and glycosylated form generated under each condition is

quantified relative to untreated cells. The decrease in Frizzled-7 and TRAPa paralleled the level of translational attenuation caused by the stress.
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Figure 6. Reconstitution of Signal Sequence-Specific Translocational Attenuation In Vitro

(A) Selective removal of lumenal proteins from rough microsomes (RM) by treatment with 0.075% deoxyBigCHAP. Equivalent aliquots of RM, the

lumenal protein-depleted RM (LD-RM), and lumenal protein fraction were analyzed by Comassie staining (top) and immunoblots for various lumenal

and membrane proteins (bottom). Although not seen in this blot, semiquantitative blotting showed �80%–90% depletion of BiP and PDI (data not

shown).
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One of the earliest events in the ER-stress response is

thought to be the titration of lumenal chaperones by their

association with an increased burden of misfolded pro-

teins (Rutkowski and Kaufman, 2004). To determine

whether this acute decrease in functionally available lu-

menal chaperones might directly influence translocation,

we analyzed the in vitro translocation of Prl and PrP in

rough microsomes (RM) containing or lacking lumenal

contents. Soluble lumenal proteins were selectively ex-

tracted from RM with low concentrations of detergent

well below those needed to solubilize membrane proteins.

The resulting membranes (LD-RM) were substantially de-

pleted (by �80%–90%) of several lumenal chaperones

(and, presumably, nonchaperone proteins) relative to

mock-extracted RM (mRM), and both preparations were

intact and of the correct orientation (Figures 6A and 6B).

While translocation of Prl was modestly decreased

(by �30%) in LD-RM, translocation of PrP was reduced

by �70% (Figure 6C). This decrease was largely reversed

upon replacing the PrP signal sequence with that from Prl.

Conversely, Prl translocation became more dependent on

lumenal proteins when its signal sequence was replaced

with that from PrP, but not from Opn. When lumenal

proteins were depleted even more thoroughly (>98%) by

reconstituting total detergent-solubilized membrane pro-

teins into proteoliposomes (to generate rRM), the differen-

tial in translocation efficiencies between Prl and PrP

widened: while both were translocated into RM with com-

parable efficiency (�75%–85%), translocation of PrP into

rRM was nearly 10-fold lower than translocation of Prl

(Figure 6D).

Translocation into rRM of Prl-PrP was several-fold more

efficient that PrP (Figure 6E), while PrP-Prl translocation

was modestly less efficient than Prl (Figure 6F). This result,

along with the similar observations in LD-RM (Figure 6C),

illustrates that the signal sequence contributes signifi-

cantly to substrate-specific differences in the dependence

on lumenal proteins for translocation. And finally, although

coreconstitution of lumenal proteins into rRM was rather

inefficient (Figure 6G; see Supplemental Data, Note 5),

we could nonetheless detect a modest stimulatory effect
Ce
on PrP translocation, but not Prl translocation (Figures

6H and 6I). Considered together, these in vitro analyses

demonstrate that while translocation of PrP and Prl are

comparably efficient under normal conditions, modulation

of lumenal protein availability has a significantly greater

impact on PrP translocation in a signal sequence-selec-

tive manner. These findings suggested that changes in

the function and/or availability of lumenal proteins (such

as chaperones) during acute ER stress in vivo could

explain the substrate-specific effects on translocation.

Induction of pQC Correlates with Reduced

Lumenal Chaperone Availability

To examine this idea, we assessed the biochemical state

of lumenal chaperones in unstressed and acutely stressed

cells. Because interactions between BiP and its substrates

could be readily stabilized after cell lysis (by ATP deple-

tion), we focused on this lumenal chaperone. During acute

DTT stress, the amount of BiP that is unoccupied with

substrate (as judged by its solubility and native size on

sucrose gradients) decreased noticeably (Figure 7A). The

remainder of BiP was engaged in heterogeneous com-

plexes and recovered in a combination of the ‘‘insoluble’’

fraction, high-molecular-weight fractions of the sucrose

gradient, and SDS-resistant material at the top of the gel

(Figure 7B). Monitoring BiP levels in the insoluble fraction

revealed a rapid reversal of this effect upon removal of

the stressor (Figure 7C) that paralleled the time course of

recovery from translocational attenuation (Figures 1E

and 5E). The amount of unengaged PDI was also reduced

(but much more modestly), while calnexin (Cnx) and calre-

ticulin (Crt) were unchanged by this assay.

Although total chaperone levels were unchanged during

the acute stress treatments employed in this study, recov-

ery for �16–20 hr led to substantial upregulation of BiP

(and to a lesser extent PDI) due to induction of the unfolded

protein response (Figure 7D). Even in this preconditioned

state, treatment with acute ER stress led to decreased

BiP levels in the soluble fraction (with corresponding in-

creases in the insoluble fraction; Figure 7E and data not

shown). However, the increased reservoir of BiP in
(B) Analysis of LD-RM and mock-extracted RM (mRM) for vesicle integrity and orientation by a protease protection assay. LD-RM and mRM were

digested with Proteinase K (PK) in the absence or presence of detergent (det; 0.5% Triton X-100) and analyzed by immunoblotting for the N terminus

of calnexin (Cnx), BiP, and PDI. The N-terminal lumenal domain of Cnx is indicated by NTD. Asterisks indicate core domains of Cnx and PDI that are

resistant to complete protease digestion. A schematic of the results is shown.

(C) Analysis of protein translocation into mRM and LD-RM. The indicated constructs were translated in vitro without (�) or with membranes (either

mRM or LD-RM) and analyzed for translocation by protease protection. Aliquots of the samples before and after PK digestion are shown. The relative

translocation efficiency in LD-RM (relative to translocation in mRM) is indicated for each construct. All translation reactions contained a peptide

inhibitor of glycosyation to simplify the analysis.

(D) Analysis of protein translocation in RM and rRM (proteoliposomes reconstituted from a total membrane protein extract of RM) as in (C). An aliquot

of the PrP samples was also immunoprecipitated with anti-PrP (+PK/IP) to better visualize the translocation products. Translocation efficiencies are

given below the lanes. The positions of precursor and processed products for Prl and PrP are indicated.

(E and F) The relative translocation efficiencies of the indicated constructs were analyzed in rRM and quantified from five experiments (mean ± SD). All

constructs were translocated into RM with greater than 75% efficiency (data not shown).

(G) Coomassie stain of rRM reconstituted in the presence of increasing concentrations of lumenal proteins. Note that the concentration of lumenal

proteins incorporated into the rRM is low and does not approach that found in RM (Supplemental Data, Note 5).

(H) Translocation of PrP and Prl was analyzed as in (D) using rRM containing increasing amounts of lumenal proteins. Note that in rRM, signal

sequence cleavage is not complete, resulting in some translocation (and hence protease protection) of unprocessed protein.

(I) The experiment in (H) was quantified, normalized to translocation in rRM (lacking lumenal proteins), and graphed.
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Figure 7. Changes in Lumenal Chaperone Availability Accompany pQC

(A) The sizes of chaperone-containing complexes were analyzed in unstressed or acutely stressed (10 mM DTT for 30 min) HeLa cells by detergent

extraction, fractionation by sucrose gradients, and immunoblotting (outlined on top). Note the decrease in BiP (and to a lesser extent, PDI) in the sol-

uble fractions, with a corresponding increase in the insoluble fraction. The band slightly larger than Crt (*) is a background band that was inconsistently

observed in some lanes.

(B) Analysis of overloaded samples prepared as in (A) reveals increased amounts of BiP in both high-molecular-weight fractions (HMW) and previously

described SDS-resistant complexes (**; see Marciniak et al. [2004]) in stressed cells relative to control cells.

(C) The level of BiP in the insoluble fraction of HeLa cells acutely treated with 10 mM DTT for 30 min or treated and recovered for between 20 and 60 min.

(D) The levels of various proteins were analyzed by immunoblotting in HeLa cells pretreated with 10 mM DTT for 1 hr followed by recovery for 18 hr.

Triplicate samples are shown. Note induction of BiP and, to a lesser extent, PDI by the pretreatment protocol.

(E) Cells were either left untreated or preconditioned with DTT as in (D). Subsequently, the levels of BiP, Cnx, and Crt in the soluble fractions (prepared

as in [A]) were analyzed by immunoblotting before or after acute stress for 30 min with 10 mM Tg or 10 mM DTT.

(F) Naive or DTT-preconditioned cells were analyzed for changes in GCR (mean ± SD for three replicates) upon acute ER stress for 15 min with 10 mM

DTT. The autoradiograph from a representative experiment is shown.

(G) Naive or DTT-preconditioned cells were analyzed for changes in PrP translocation upon acute ER stress for 30 min with 10 mM DTT. Note that

while naive cells showed translocational attenuation (as judged by decreased PrP glycosylation), preconditioned cells were largely refractory. Trans-

lational attenuation upon DTT stress was equal in both cells (data not shown).
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preconditioned cells still left enough in the soluble fraction

even during stress to maintain levels comparable to un-

stressed nonpreconditioned cells (compare lane 1 to lanes

5 and 6 in Figure 7E). Remarkably, preconditioned cells

showed little or no translocational attenuation during acute

stress, as judged by analyses of either the GCR (Figure 7F)

or PrP biosynthesis (Figure 7G). Thus, using BiP as a

marker, we find that the available (i.e., unengaged) levels

of this lumenal chaperone correlate inversely with sub-

strate-specific translocational attenuation. Interestingly,

translocation of BiP, whose upregulation is a critical facet

of the stress response, is not attenuated even during

maximal acute stress (Figure 7H). Together with the bio-

chemical analysis of translocation in vitro (Figure 6), these

results point to rapid changes in lumenal chaperone

availability and/or function during acute stress as one

(but perhaps not the only) basis for substrate-specific

translocational attenuation and pQC (see Supplemental

Data, Note 6 for possible models).

Conclusions

This study illustrates that protein translocation into the ER

lumen is not a constitutive or deterministic process but in-

stead can be regulated in response to changes in cellular

conditions. In the context of acute ER stress, changes in

translocation efficiency are substrate specific, reversible,

and physiologically important (see Supplemental Data,

Note 7 and model in Figure S11). Selectivity of transloca-

tional attenuation is determined (at least in part) by signal

sequences, whose length, hydrophobicity, charge, and

amino acid composition vary widely between substrates

(von Heijne, 1985). Our discovery that this structural diver-

sity among signals imparts differential functionality during

translocation provides a rationale for why signal se-

quences are often conserved in a substrate-specific man-

ner (Kim et al., 2001; Kim et al., 2002) and appear to evolve

more slowly than expected for such a highly variable motif

(Williams et al., 2000).

In the case of PrP, a relative weak and modulatable sig-

nal sequence may be especially important for minimizing

the risk of permanantly producing potentially toxic species

in enclosed compartments like the ER lumen. A similar

logic may apply to other misfolding-prone secretory and

membrane proteins. An analogous (and non-mutually

exclusive) explanation for signal sequence diversity is

that certain highly overproduced secretory proteins like

prolactin may need to contain signal sequences that can

escape normal stress-induced attenuation mechanisms

that might be induced during rapid changes in secretory

activity. This rationale presumably applies to BiP, which

sometimes needs to be translocated effectively even at

high expression levels during ongoing ER stress. Thus,
C

sequence differences among signal sequences may

provide a means to regulate the translocation efficiency

of some substrates independently of others for various

physiological purposes.

Of note, the most efficient signal sequences (as judged

in vitro) may prove to be the least regulatable. This is anal-

ogous to many other biological systems, in which optimal

efficiency comes at a cost of reduced dynamic range. For

example, highly regulatable promoters often have very low

basal activity and are dependent on many accessory tran-

scription factors, while extremely strong promoters are

less modulatable. A similar concept may apply to translo-

cation, in which signal sequences whose interactions with

the translocon are highly efficient and less dependent on

accessory factors are less amenable to modulation in

trans. Such a view would provide a logical explanation

for the otherwise paradoxical observation that most signal

sequences appear to be less than maximally efficient

(Kim et al., 2002; Levine et al., 2005).

The mechanism by which differences among signal se-

quences permit substrate-specific and stress-dependent

attenuation of translocation remains to be studied. Intrest-

ingly, the posttargeting interaction between the signal se-

quence and translocon (Jungnickel and Rapoport, 1995;

Plath et al., 1998; Mothes et al., 1998) is not only highly

variable (Kim et al., 2002) but is differentially influenced

by trans-acting factors (Voigt et al., 1996; Fons et al.,

2003) and small molecules (Garrison et al., 2005; Besemer

et al., 2005). It is therefore tempting to speculate that such

differences in the signal-translocon interaction are analo-

gously exploited during ER stress for selective lumenal

protein-dependent translocational attenuation to initiate

pQC. Analysis of this step in mechanistic detail for multiple

signal sequences that are either sensitive or refractory to

translocational attenuation will be required to elucidate

the molecular basis of substrate-specific regulation of

translocation. The reconstitution of signal sequence-

selective translocational attenuation in a biochemical

system amenable to fractionation (Figure 6) should now

facilitate these future studies.

EXPERIMENTAL PROCEDURES

Experiments in this study generally utilized well-characterized proce-

dures described in previous studies as cited below. Time points, treat-

ment conditions, and concentrations of pharmacologic agents specific

to individual experiments are provided in the respective figure legends.

Additional (previously published) details such as antibody epitope se-

quences, buffer conditions, and explanations of experimental methods

can be found in the Supplemental Data.

Materials

Antibodies were either from commercial sources or described previ-

ously, and constructs were made using standard methods (details
(H) Analysis of BiP-GFP translocation during acute stress. HeLa cells cotransfected with BiP-GFP and Prl-GFP (a constitutively translocated control)

were subjected to 10 mM Tg or 10 mM DTT for 15 min prior to pulse labeling for 15 min. The cytosolic fraction was extracted with digitonin, and the

noncytosolic (i.e., translocated) protein was recovered by immunoprecipitation with anti-GFP. Note that the level of translocated BiP-GFP during

stress closely parallels Prl-GFP, indicating no obvious translocational attenuation. BiP-GFP translocation relative to Prl-GFP in the same cells was

tabulated for three experiments and shown below the gel.
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provided in Supplemental Data). CT was prepared as described (Gar-

rison et al., 2005). DTT was from Roche and dissolved in water. Tg, Tm,

BFA, MG132, and ALLN were from Calbiochem, dissolved in DMSO or

EtOH (BFA), and used at concentrations indicated in the figure leg-

ends. Digitonin was from Calbiochem. Immobilized ConA was from

Amersham-Pharmacia.

Cell Culture and Biochemical Analyses

HeLa, COS-7, and N2a cells were cultured in DMEM containing 10%

FBS at 5% CO2 and transfected with Effectene (Qiagen) or Lipofect-

amine 2000 (Invitrogen). Stable cell lines were generated by selection

in Zeocin using standard methods (see Supplemental Data). Replating

viability assays were performed and quantified by minor modification

of published procedures (Marciniak et al., 2004). Pulse-labeling, frac-

tionation, immunoprecipitation, and solubility analyses were per-

formed by minor modifications of published procedures (Fons et al.,

2003; Rane et al., 2004; Levine et al., 2005). Exact times and conditions

are provided in individual figure legends. Quantification of radiolabeled

products utilized a Typhoon Phosphorimager and accompanying soft-

ware (Molecular Dynamics).

In Vitro Reconstitution and Translation

Translation in reticulocyte lysate and analyses of translocation by pro-

tease protection were as before (Fons et al., 2003). Preparation of RM,

mRM, LD-RM, rRM, and rRM containing lumenal proteins was as de-

scribed (Hegde et al., 1998b; Fons et al., 2003; Garrison et al., 2005).

Supplemental Data

Supplemental Data include 11 figures, supplemental notes, Supple-

mental Experimental Procedures, and Supplemental References and

can be found with this article online at http://www.cell.com/cgi/

content/full/127/5/999/DC1/.
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